Repositori DSpace/Manakin

Defining and Operationalizing Propositional Complexity into Idea Units: Effects of Mode, Discourse Type, Task Type and Task Complexity

Mostra el registre parcial de l'element

dc.contributor Gilabert Guerrero, Roger
dc.creator Parra Paños, Laura
dc.date 2016-02-24T08:47:13Z
dc.date 2016-02-24T08:47:13Z
dc.date 2015-07
dc.date.accessioned 2024-12-16T10:21:58Z
dc.date.available 2024-12-16T10:21:58Z
dc.identifier https://hdl.handle.net/2445/95816
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/13585
dc.description Màster de Lingüística Aplicada i Adquisició de Llengües en Contextos Multilingües, Departament de Filologia Anglesa i Alemanya, Universitat de Barcelona, Curs: 2015, Tutor: Roger Gilabert Guerrero
dc.description Propositional complexity is a dimension of L2 performance that refers to the amount of information that a person conveys in a given message and, according to Ellis and Barkhuizen (2005), it can be measured in terms of idea units (IUs). This study does not only aim at developing some guidelines as to how to segment oral and written data into IUs in order to operationalize a measurement of propositional complexity, but it also aims at investigating the relative impact of mode, discourse type, task type and task complexity on participants’ production of IUs. In order to achieve these objectives, the study analysed data that was generated by participants out of performing tasks that differed in mode, discourse type, task type and task complexity. After segmenting this data following the guidelines that were designed, it was considered that the guidelines might constitute a reliable means of operationalizing propositional complexity, as a considerably high agreement between raters was obtained. As regards the relative influence of mode discourse type, task type and task complexity on the number of IUs conveyed, after conducting a standard and a hierarchical multiple regression, the results showed that 38.5% of the variability in production of IUs can be significantly explained by these independent variables and that all of these variables made a significant unique contribution on the number of IUs that can be produced. Nonetheless, the amount of variance in the dependent variable explained by each of the predictors was different. In the standard regression, mode appeared to be the best predictor, uniquely explaining 9.9% of the variance in production of IUs, while the rest of the predictors independently explained between 1.7 and 4.4% of the variance. In the hierarchical regression, nonetheless, the results (which were supported by further analyses that were conducted), indicated that both mode and discourse type were the best predictors of number of IUs conveyed. Task type and task complexity were found to account for a similar amount of variance to the one obtained in the standard regression.
dc.format 55 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Parra Paños, 2016
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Màster Oficial - Lingüística Aplicada i Adquisició de Llengües en Contextos Multilingües
dc.subject Llengua i ensenyament
dc.subject Multilingüisme
dc.subject Adquisició d'una segona llengua
dc.subject Treballs de fi de màster
dc.subject Language and education
dc.subject Multilingualism
dc.subject Second language acquisition
dc.subject Master's theses
dc.title Defining and Operationalizing Propositional Complexity into Idea Units: Effects of Mode, Discourse Type, Task Type and Task Complexity
dc.type info:eu-repo/semantics/masterThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte