Repositorio Dspace

Resolució numèrica d’equacions en derivades parcials parabòliques

Mostrar el registro sencillo del ítem

dc.contributor Jorba i Monte, Àngel
dc.creator Alarcón Pradal, Andreu
dc.date 2016-01-08T10:04:43Z
dc.date 2016-01-08T10:04:43Z
dc.date 2015-06-30
dc.date.accessioned 2024-12-16T10:21:38Z
dc.date.available 2024-12-16T10:21:38Z
dc.identifier http://hdl.handle.net/2445/68633
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/13023
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2015, Director: Àngel Jorba i Monte
dc.description A partial differential equation (PDE) is an equation that contains an unknown function with more than one variable and some of its partial derivatives. We can classify PDE’s in linears or nonlinears and by the order of its derivatives as well. Within these classifications stand out linear PDE’s of second order, because they can modelling a lot of physical phenomena. We find three groups inside this set: • Elliptical equations, which appear in heat transmission under stationary conditions problems, particle difussion or the vibration in a membrane. • Parabolic equations, which appear in the same kind of problems than before but with one exception, they change over time now. • Hyperbolic equations, which appear in problems about mass transport in fluids, wave phenomena, among others. In this work, we will study several types of boundary value problems (BVP) of a parabolic equation, the heat equation. BVP consists in finding a function $f\in C^{2}$ that satisfies the conditions of the heat equation and the conditions imposed on the unknown function (or its derivatives) in the boundary of the region we are working on. Frequently, these problems cannot be solved analytically. One of the most used methods these days is the finite element method. This method was developed from the 40’s. The aim of the finite element method is to approximate a weak solution for a BVP from a mount of referency nodes which are located on the region of the problem. To perform this whole process, we will start describing some functional analysis tools that we will need from now on in this work, straightaway we will see the numerical methods that we will use and we will conclude with an example resolution.
dc.format 49 p.
dc.format application/pdf
dc.language cat
dc.rights cc-by-nc-nd (c) Andreu Alarcón Pradal, 2015
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Problemes de contorn
dc.subject Treballs de fi de grau
dc.subject Equacions diferencials parabòliques
dc.subject Mètode dels elements finits
dc.subject Anàlisi funcional
dc.subject Boundary value problems
dc.subject Bachelor's theses
dc.subject Parabolic differential equations
dc.subject Finite element method
dc.subject Functional analysis
dc.title Resolució numèrica d’equacions en derivades parcials parabòliques
dc.type info:eu-repo/semantics/bachelorThesis


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta