Repositori DSpace/Manakin

Value-Based Reinforcement Learning algorithms in Sparse Distributed Memories to solve the Mountain-Car Problem

Mostra el registre parcial de l'element

dc.contributor Pellegrino, Paolo
dc.creator Francí i Rodon, Arnau
dc.date 2015-10-21T11:51:14Z
dc.date 2015-10-21T11:51:14Z
dc.date 2015-06
dc.date.accessioned 2024-12-16T10:21:16Z
dc.date.available 2024-12-16T10:21:16Z
dc.identifier http://hdl.handle.net/2445/67390
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/12403
dc.description Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Any: 2015, Tutor: Paolo Pellegrino
dc.description In the framework of digital electronics optimization of the memory resources used is a crucial issue. Therefore many Control algorithms are studied in order to improve the trade-off between computational power and memory requirements. In this work we explore some possibilities to improve current state-of-the-art Temporal-Difference (TD) Reinforcement Learning (RL) strategies. We made use of a type of local function approximation structures known as Sparse Distributed Memories (SDMs). The interest of this investigation underlies on the belief that SDMs architectures can help to avoid the exponential increase of memory sizes due to a linear increase in the state’s variables. Because RL doesn´t rely in prior information of the environment this is a frequent problem for these algorithms, as a lot of different features can appear to play a role when in fact only few of them are really relevant for the agent; a sampling of the states along with a method to generalize unseen states’ values becomes a must.The main achievement has been a method capable to distribute the memory locations which ensured that regions in the state space more needed had a more intense coverage, with the purpose to improve approximations’ resolution while keeping low memory requirements and high-dimensional scalability. We gave attention also to another issues as the reduction in the number of parameters.
dc.format 5 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Francí i Rodon, 2015
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Física
dc.subject Intel·ligència artificial
dc.subject Simulació per ordinador
dc.subject Treballs de fi de grau
dc.subject Artificial intelligence
dc.subject Computer simulation
dc.subject Bachelor's theses
dc.title Value-Based Reinforcement Learning algorithms in Sparse Distributed Memories to solve the Mountain-Car Problem
dc.type info:eu-repo/semantics/bachelorThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte