Repositori DSpace/Manakin

Q-learnings in RTs game's micro-management

Mostra el registre parcial de l'element

dc.contributor Cerquides Bueno, Jesús
dc.contributor Preuss, Mike
dc.creator Palacios Garzón, Ángel Camilo
dc.date 2015-10-16T08:23:19Z
dc.date 2015-10-16T08:23:19Z
dc.date 2015-09-10
dc.date.accessioned 2024-12-16T10:21:11Z
dc.date.available 2024-12-16T10:21:11Z
dc.identifier http://hdl.handle.net/2445/67303
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/12257
dc.description Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2015, Director: Jesús Cerquides Bueno
dc.description The purpose of this Project is to implement the one-step Q-Learning algorithm and a similar version using linear function approximation in a combat scenario in the Real-Time Strategy game Starcraft: BroodwarTM. First, there is a brief description of Real-Time Strategy games, and particularly about Starcraft, and some of the work done in the field of Reinforcement Learning. After the introduction and previous work are covered, a description of the Reinforcement Learning problem in Real-Time Strategy games is shown. Then, the development of the Reinforcement Learning agents using Q-Learning and Approximate Q-Learning is explained. It is divided into three phases: the first phase consists of defining the task that the agents must solve as a Markov Decision Process and implementing the Reinforcement Learning agents. The second phase is the training period: the agents have to learn how to destroy the rival units and avoid being destroyed in a set of training maps. This will be done through exploration because the agents have no prior knowledge of the outcome of the available actions. The third and last phase is testing the agents’ knowledge acquired in the training period in a different set of maps, observing the results and finally comparing which agent has performed better. The expected behavior is that both Q-Learning agents will learn how to kite (attack and flee) in any combat scenario. Ultimately, this behavior could become the micro-management portion of a new Bot or could be added to an existing bot.
dc.format 31 p.
dc.format application/pdf
dc.language eng
dc.rights memòria: cc-by-nc-sa (c) Ángel Camilo Palacios Garzón, 2015
dc.rights codi: GPL (c) Ángel Camilo Palacios Garzón, 2015
dc.rights http://creativecommons.org/licenses/by-sa/3.0/es
dc.rights http://www.gnu.org/licenses/gpl-3.0.ca.html
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject Aprenentatge automàtic
dc.subject Aprenentatge per reforç
dc.subject Programari
dc.subject Treballs de fi de grau
dc.subject Disseny de videojocs
dc.subject Algorismes computacionals
dc.subject Agents intel·ligents (Programes d'ordinador)
dc.subject Machine learning
dc.subject Reinforcement learning
dc.subject Computer software
dc.subject Bachelor's theses
dc.subject Video games design
dc.subject Computer algorithms
dc.subject Intelligent agents (Computer software)
dc.title Q-learnings in RTs game's micro-management
dc.type info:eu-repo/semantics/bachelorThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte