

TREBALL FINAL DE GRAU

Estudiant: Manel Moreno Blanco

Titulació: Grau en Tècniques d'Interacció Digital i de Computació

Títol de Treball Final de Grau: Fleet Manager Control de flotes

Director/a: Jordi Mateo Fornés

 Presentació

Mes: Juliol

Any: 2022

2

Abstract

The aim of this project is to bring real time information about the location of a
company’s vehicles in order to increase both its control capacity and efficiency.

This project’s implementation is divided in three main parts. The first part corresponds
to the backend, where we centralize and store all the project’s data. The second part is
assigned to the frontend, where we need to be able to have programming views and the
results of the data processing done by the backend, using html and css. The third part of
this project corresponds to Mikrotik device configuration, as we need to make them able
to send their coordinates to the GPS via Curl to the API, in order to store them.

All of this will require a database where we process this objects, Google Maps to be able
to show a map with the locations in our web’s views, and PHP to stablish a connection
with the database and further process these elements. We will we working with Larabel,
as it is an easy-to-use framework for real life item location management.

3

Table of contents

Abstract .. 1

Introduction .. 4

Objectives .. 5

Methodology ... 5

Chosen Techniques .. 5

Project Planification .. 6

Project Monitoring .. 7

Solution Design ... 8

Database design .. 8

Architecture .. 9

Backend .. 9

Frontend ... 11

Mikrotic Configuration .. 23

Deployment .. 25

Results ... 26

Functionality and final product .. 26

Product’s impact to the company .. 26

Conclusions ... 27

Bibliography .. 28

4

Introduction

Iguana SL is a telecommunication company that offers high-speed internet to Anoia’s
residents. It also provides technical service related to optic fiver and television
installation, complemented with other services related to network usage.

This company assigns a vehicle to each one of its technicians to allow them to go to their
client’s address in order to provide them with the services aforementioned or to resolve
network -related incidents.

One of the main troubles that this company faces is the lack of real time vehicle control,
and the inability to confirm if the technicians have arrived at the correct location at the
time agreed with their clients. It was also unable to know when one of their workers had
finish a task and was able to move to the next one.

After analysing different ways to assess this problem, the main proposal was to add a
GPS device to the vehicles with the aim of locating them in real time.
Taking advantage of this technology we should be able to know if a technician has
correctly arrived at the designed place and when has him finished his job.

FleetManager was then born to solve this problem. Its purpose is to create a platform
able to manage all this data and configure a GPS device capable of bringing real time
information about the location of the company’s vehicles.

In order to initiate this project, we carried out a study case to analyse the different
models and scenarios which we would be working on. The chosen case addressed a
worker that had a vehicle assigned and needed to go to a client’s address to carry out
his service.

One of the main setbacks that we found was to narrow down which was the concrete
model that we would be using for information management. Another one of the
problems that we observed was to match the coordinates obtained by the GPS with the
corresponding vehicle.
Once these difficulties were considered, we decided that using a web page was the best
way to address them considering the advantages that it entails, such as model data
storage and the functionality that it provides.

The functionality of this web page will rest with one or more users (in charge of worker
management) that will be able to manage this data.

5

Objectives

• Worker’s data management.
• Vehicle’s data management.
• Worker-vehicle matching.
• Platform users’ data management.
• Linking the vehicles with their corresponding coordinates.
• Mikrotik device GPS configuration.
• Script programming to send coordinates to the API.
• Server configuration to upload our project.
• Working and incorporating into Google Maps’ API.
• Displaying vehicle locations in the map.
• Displaying a vehicle localisation summary.

Methodology

Chosen Techniques

All of this project’s development has been carried out using Laravel1. Laravel is a
framework that uses PHP2 programming language and allows us to work with database
models avoiding directly using SQL language. It also provides us with a lot of
functionalities that help us to program and keep a good maintenance of our application,
such as new table and model creation.

Laravel uses a design pattern called controller view model. Designed patterns are
problem resolving techniques common in both program development and in other fields
related to interaction or interface design. It is often crucial to use a pattern design, as it
helps us during the programming process, and will allow us to avoid poor application
maintenance in the future.

This pattern is manly used to obtain a three-layer separation. The first layer takes care
of the model, where the object is defined and how it will be processed. The second layer
belongs to the controller, which is defined as the functions or actions that process the
object. The final layer is the view, which displays an interface for the user where he will
be able to see the final result of the sum of these actions conducted on the model or
object.

A key part of this work is vehicle localization to manage their real time location. To solve
this, we have developed an API using Laravel that allows us to handle all this data.

An API is the combination of procedures that allow two program components to
communicate between them using a set of stablished definitions and protocols. It is
what enables us to configure a GPS (Global Positioning System) to obtain satellite, real
time, very accurate information about the geographic location of a vehicle.

6

Once vehicle location was solved, we programmed a GPS device equipped with an
internet connection sim card. This device will send the coordinates via fetch tool. Fetch
tool is a Mikrotik tool that sends POST/GET and other kind of requests to a remote
server, in this case our API, in order to store the coordinates of the vehicle that we have
assigned to it.

Our Mikrotik3 was programmed using WinBox4. To enable the scripts that run at every
moment we also needed to install two antennas to the device in order to activate the
GPS function and obtain their coordinates.

We also used Tailwind css5 to keep our data in an attractive and intuitive demeanour.
Tailwind css is a style library that provides us with tools to make the visible part of our
web page. Unlike Boostrap6, Tailwind brings us a higher performance in exchange for
lesser support and a smaller user community.

Lastly, one of the most important tools that we have used to manage the databases is
mysql7 as well as phpMyAdmin8. Using them in tandem allowed us to further facilitate
database management and displaying.
We used a relational database model to keep an easier maintenance and a good model-
table relation. This eases the process of keeping information about more than one
model and obtaining extra information about the related model.

Project Planification

Project planification is based on narrowing down the project’s duration, its budget and
the amount of formation required by the worker which will program it.

In this case, formation was carried out during a month, where we realised the
familiarization with Laravel framework, and we obtained basic knowledge about its
functioning.

We also stablished different project stages, where the most part of time was assigned
to software development, but we also had to set time aside for Mikrotik device
configuration.
This time-delimited task separation has shown to optimize the efficiency and to shorten
projects duration. We also agreed on biweekly meetings in order to make actualizations
about the state of our project and to evaluate the obtained performance.

7

Project Monitoring

In Figure 1 we are able to see the duration of the different tasks that we have been
working on through the project.

The first part consisted of worker formation, which contains Laravel framework
familiarization and learning, which lasted for one and a half months.
Further on we started proper project developing, including both the backend and the
frontend. It had a 6-month duration.
Later on, we carried out Mikrotik device configuration, which lasted for two more
months.
Finally, all the functionality verification tasks were carried out during the week prior to
its deployment.

To stablish the monitoring of this application we worked using the SCRUM method. This
method consists in keeping a regular task realization process with the aim of working in
a collaborative manner in order to promote teamwork. Using this working method
should allow us to obtain the best result possible in any determined project.
This method also relays on setting objectives during project development and to set up
meetings to update everyone involved about the state of the tasks and the efficiency
obtained.

Once we obtained our first goals, we configured a Git12 to keep all the deploys of the
tasks that had been carried out. For this development’s maintenance we created two
branches on our Git. One was named test, where we developed and verified that all of
the application’s functionality was working correctly, and a second branch named
production to upload all of this tested functionality once we made sure that there were
no mistakes.

Figure 1 Gantt’s Diagram

8

Solution Design

 Database Design

In the following diagram (Figure 2) we can see a table relation model. There are three
models in our database. On the one side, the attributes of the workers’ data that consists
of a DNI, name, surname and phone number, and a vehicle identifier, which is related
to our vehicle data. This allows us to obtain detailed information about the worker and
the vehicle’s relation.
The third model consists of the vehicle’s coordinates, which are also related through the
vehicle’s identifier.
All of this allows us to link to a determined vehicle a worker and its coordinates.

To manage this models we are in need of another one, the user which will manage this
data and will obtain the information generated by it. This information will be
subsequently displayed on our webpage.

Figure 3
Figure 2: UML database design

9

Architecture

In Figure 3 we are able to see the itinerary and functionality of this project and how we
send the data to FleetManager’s platform. As we can see, we start with a worker to
whom a vehicle is assigned. Then we have a Mikrotik device equipped with GPS assigned
to the same vehicle that stores its coordinates. All this data goes then through
FleerManager’s API, whit the help of Google Maps’9 API, to display on the screen the
exact ubication of this vehicle and its assigned worker.

Backend

In the backend part of the project, we develop all of the necessary procedures to allow
us to treat and store all of the information needed when a user makes an action, or a
device sends his coordinates.

We will only be using one of the API’s routes, since we expect the Mikrotik device to
send its coordinates through the endpoint that we have defined.

Here we can see a list of all the requests made by the backend:

Figure 4 Functional diagram of the project
Figure 3: Functional diagram of the project

10

In the function noted further on we are able to see how we process the data that we get
from the Mikrotik device.
With these coordinates we will firstly create the object “location”, and in its attributes
we will store the latitude and longitude, plus the vehicles identifier that links it to a
target vehicle. If the connection has been correctly stablished, we will display a verifying
message accompanied with the state 200 of the request.
If there is any problem with the request, an error message will be shown informing of
the problem that our program detected.

Following this, we did some API single testing using fake data that we are able to create,
update and eliminate specifically for this process. This allows us to verify if there is any
creation, elimination or displaying error.

Method http Endpoint Response status Funcionality

POST api/locations/insert Succes:200
Error:404 GPS coordinate sending

PATCH api/profiles/{user_use
rname}

Succes:200
Error:404 User data updating

POST api/vehicles/insert Succes:200
Error:404 New vehicle creation

GET api/vehicles/index Succes:200
Error:404 Display all vehicles

GET api/vehicles/{vehicle} Succes:200
Error:404 Display vehicle information

GET api/vehicles/search Succes:200
Error:404 Search a vehicle by its license plate

POST api/vehicles/{vehicle} Succes:200
Error:404 Vehicle data update

GET api/vehicles/info/{veh
icle}

Succes:200
Error:404

Display advanced information about a vehicle and its
route

POST api/workers/insert Succes:200
Error:404 Create a new worker

GET api/workers/index Succes:200
Error:404 Display all workers

GET api/workers/info/{w
orker}

Succes:200
Error:404

Display advanced information and the location of a
worker

GET api/workers/{worker
}

Succes:200
Error:404 Display editable information about a worker

POST api/workers/{worker
}

Succes:200
Error:404 Update worker data

DELETE api/workers/delete/{
worker:id}

Succes:200
Error:404 Delete the worker specified by an identifier

DELETE Api/vehicles/delete/{
vehicles:id}

Succes:200
Error:404 Delete the vehicle specified by an identifier

GET api/locations/maps Succes:200
Error:404 Google Maps testing

GET api/location/{locatio
ns:id}

Succes:200
Error:404 Display a vehicle’s coordination

11

Frontend

In relation to the frontend, we assigned different tasks to develop the various views. It
is in this section where the user can observe the interactions between all the functions
carried out by the controller.

In the following list we show all our web platform’s routes that the user can use to access
the different views. We can also see the functions with which the user is able to interact
with the formulary to create certain objects.
Laravel doesn’t by default let a user access to Middleware if he is not registered.
Middleware is a service that brings security to the platform, both to the API and to the
web page, and allows us to create various restrictions in them. In this example, we have
some kinds of views and functions restricted which only an administrator user can
access.

Method http Endpoint Response status Funcionality

GET users/index Succes:200
Error:404 Display all users

GET users/insert Succes:200
Error:404 Display the new worker creation view

POST users/insert Succes:200
Error:404 Worker creation function

PATCH users/info/{user:id} Succes:200
Error:404 User profile picture and data updating

GET users/info/{user:id} Succes:200
Error:404 Display user information

DELETE users/delete/{user:id} Succes:200
Error:404 Delete the user selected by its identifier

GET home/ Succes:200
Error:404 Home page

GET lang/{Lang} Succes:200
Error:404 Choose the platform’s language

GET profiles/{user:username} Succes:200
Error:404 Display the logged user’s profile

PATCH profiles/{user:username} Succes:200
Error:404 Update the logged user’s profile

POST vehicles/insert Succes:200
Error:404 Vehicle creation function

GET vehicles/insert Succes:200
Error:404 Vehicle creation form display

GET vehicles/index Succes:200
Error:404 Display a table with all the vehicles

POST vehicles/{vehicle} Succes:200
Error:404 Display the editable data of the vehicle

GET vehicles/search Succes:200
Error:404 Search a vehicle by its licence plate

POST vehicles/{vehicle} Succes:200
Error:404 Edit the data of target vehicle

GET vehicles/info/{vehicles} Succes:200
Error:404

Display detailed information about a
vehicle

12

In Figure 4 we can see the web page’s view where the user can select the language which
he wants to work on and a button to access to our platform’s login.

GET vehicles/realtime/{vehicle} Succes:200
Error:404

View that shows the location of a vehicle
in a map

GET vehicles/map/{vehicle} Succes:200
Error:404 Vehicle’s map view

POST workers/insert Succes:200
Error:404 Worker creator function

GET worker/insert Succes:200
Error:404 Worker creator function’s view

GET wokerk/index Succes:200
Error:404 Display a table with all the workers

GET worker/info/{worker} Succes:200
Error:404

Display detailed information about a
worker

POST workers/{worker} Succes:200
Error:404 Edit the data of target worker

DELETE workers/delete/{worker:id} Succes:200
Error:404 Delete a worker selected by its identifier

DELETE vehicles/delete/{vehicle:id} Succes:200
Error:404 Delete a vehicle selected by its identifier

Figure 5 Main Page Figure 4: Main Page

13

In Figure 5 we can see the screen in which the user writes his credentials in order to
access the platform.

Once the user has accessed, he is able to see a summarised information about the
worker status and their locations, as shown in Figure 6.

Figure 6 Login Page

Figure 7 Dashboard Page

Figure 5:Login page

Figure 6: Dashboard page

14

The user, once he has accessed to the worker’s screen, he will see a list of the company’s
workers and a button to add new workers, as we can appreciate in Figure 7.

In the workers table we can also access to 2 other functionalities. A search engine to
search by name or NIF and a button to edit a worker’s information and, if it was the case,
delete his data. Moreover, if the user wants to see a detailed view of the worker’s file
card, he can do so by clicking on the corresponding line.

Figure 7: Worker’s page

15

Once the user accesses to the information about a worker he is able to see a summary
with all the locations where his vehicle has travelled in a map, shown in Figure 8. We
additionally have the functionality shown in Figure 9 that allows us to sort by date to see
the locations that the vehicle has been in during a concrete day.

Figure 8: Worker location page

Figure 9: Worker location filter

16

As shown in Figure 10, the user must fill this questionnaire to be able to enrol a new
user. DNI is a unique and specific field that prevents the creation of different workers
with the same number. Vehicle assignation is optional, since it may happen that the
company doesn’t have an available vehicle at the moment.

If a user needs to edit a worker’s information that is displayed in the table, he has to
click the pencil icon, where he will access the view shown in Figure 11 to edit it.

Figure 10: Worker creator questionnaire

Figure 11: Worker data editing screen

17

As shown in Figure 12, the user is able to access a table view with al the company’s
vehicles. It contains various functions such as a search engine to search by license plate
or brand, a button to access its real time location, a button to edit a vehicle’s data and
another one to delete them.
Moreover, if the company obtains a new vehicle, it can add it to the database with the
button next to the search engine

As we can see in Figure 13, the user must fill the form in order to introduce a new
vehicle’s data. There are compulsory fields such as the license plate number, the name
of the vehicle and the chassis number.

Figure 12: Vehicles Page

Figure 13: Vehicle creation questionnare

18

One of the functions of the table is to access a vehicle’s real time location view. In the
case shown in Figure 14, the user accesses to a worker’s vehicle and shows its location
being in Castellolí.

As shown in Figure 15, the user will access this view trough the table specifying which
vehicle he needs to edit and will enter the vehicle editing questionnaire.

Figure 14: View of all worker's locations with their assigned vehicles

Figure 15: Vehicle data edition screen

19

Figure 17: Detailed vehicle information screeen

Figure 16: Map with the routes of the vehicle filtered by date

20

As shown in Figure 16, the user can access and see the information about a vehicle,
including the data and its last coordinates registered, in addition to all the vehicles
location in the map.

In Figure 17, we can see the filter button, which has two functionalities. As shown in
Figure 18, the user is able to filter by date and see the whole vehicle’s route during that
day, its duration and the total number of kilometres made . Moreover, as shown in
Figure 19, the user has access to the register of all this coordinates, being able to also
filter by date and download a PDF with all this information.

Figure 18: Modal where the user filters by date and can download the summary pdf

Figure 19: Pdf downloaded by the user with all the records of the coordinates of specific date

21

As seen on Figure 20, when the user accesses the locations views, he will be able to see
the vehicle’s last location registered on the map. It does also have a button that allows
him to filter by worker and see his las location registered.
If the user clicks on the vehicle’s location icon, he will be able to see a bit of information
about the target vehicle, such as his licence plate number, the time that it has spent
moving and the worker that is driving it. If he wants to obtain more information, the
user is able to do so using any of the options previously mentioned.

Figure 21 shows the screen in which the user will be able to edit their own data, change
his profile picture and his password.

Figure 20: Locations Page

Figure 21: View of the user's profile where he can edit his data

22

As shown in Figure 22, administrator users will also be able to access a functionality by
any view that allows them to manage the users. If the user is not an administrator, he
would only be able to edit the data on his own profile.

Figure 23 shows the user management screen, where only administrators will be able to
access into. Using this view, the administrator will be able to add new users and to assign
roles to them. He will also be able to edit user’s data and eliminate user profiles.

Figure 22: Administrator user menu

Figure 23: Administrator view where user management is located

23

Mikrotic Configuration

To configure our Mikrotik devices, we assigned various tasks consisting of sim card, LTE
internet and GPS configuration.
We developed a scrip programmed to run every two minutes, which sent the
coordinates of a device through our API. We also installed a hardware which consisted
in an external antenna that allowed us to receive the GPS coordinates more precisely.

In order to configure the Route OS Mikrotik device, we required WinBox, a tool that
allowed us to configure both the GPS and the LTE of the sim card. The latter was needed
in order to access the internet and make the proper requests to our API in the remote
server.

In Figure 24 we are able to see the terminal of the program where we can type the
command “/system routerboard sim set sim-slot=up” to detect our sim card an
configure it.

Figure 24: Winbox program terminal

24

In order to configure the sim card once it has been detected by the terminal, we must
go to the view shown in Figure 25, in the subsection “interfaces”, where we will
configure the LTE and APNS to activate its internet.

Once we have internet access, we can do ping testing in our terminal. By doing this, we
can test the sim card external requests to our server.

Following this, we configured the GPS. In order to activate this service, we needed to
purchase an antenna that allowed us to obtain enough signal, since with the internal
antenna we did not get enough communication with the satellite.

Finally, to conclude the device’s configuration with all of its functionality, we
programmed a script that sends to our API the coordinates linked with an identifier in
order to identify the vehicle which they were coming from.

Figure 25: LTE activation showcase

25

In Figure 26 we can see the script where we store the coordinates as well as the GPS’
configuration. We do also send the vehicle’s identifier and a security token that allows
us to send requests to our server.

Once we verified that the script was fully functional, we programmed a task that sent
the vehicle’s coordinates every two minutes to our API. This way, we were able to make
a register with all the whereabouts of the vehicle during each day.

Deployment

Once the project’s development is finished, including the software and hardware, it is
necessary to upload it with a public, own domain in order to be able to make requests
to the API by the Mikrotik device.

In order to obtain a public domain, there is a process that we need to consider:

1. The first step is to download Apache210 with the version 2.4.43 to have a web
server and upload our project

2. Then we need to download MySQL with the 5.5 version, in addition to
phpmyadmin with the 5.2 version in order to keep and manage the databases
and tables

3. The third step is to install PHP in the 8.0 version, since it is needed to use the
latest functionalities that our framework provides us with, and makes us avoid
incompatibility problems

4. The next step is to download the 2.0 version of Composer11, which is a PHP
packet library that acts as a standard for managing, downloading and installing
dependencies and libraries

5. Then we need to download our project FleetManager developed with Laravel
6. Configure the “.env” archive of our project so it points to our server database.
7. Execute the php command “artisan migrate” in order to migrate all the tables of

our project to the server’s database
8. Configure the archive in the folder sites-available to point to our project’s folder,

with the domain fleetManager.iguana.cat
9. Reboot Apache
10. It is advisable to install a ssl certificate. Encrypting the platform’s web requests

keeps the users secure when using our application.

Figure 26: Mikrotik script to capture GPS coordinates able to be sent to the API

26

Results

Functionality and final product

Following the SCRUM method we have continuously proposed goals, assigned weekly in
the form of new tasks that took us closer to establish our objectives. This method is
particularly useful for proportioning a coherent order for developing the functionalities
of an application.

This project contains all the required functionalities needed to solve the problems of
Iguana SL related to vehicle management. FleetManager allows us to manage the
workers and to assign a vehicle to them, in addition to the management, creation and
elimination of the users that can sign up in it. The most relevant functionality is the
vehicle’s position control using the GPS device, which allows us to locate them through
our API.

Some of the other advantages that this application brings us are the various filters, which
provide us with a lot of functionality, and the capacity to make daily summaries of the
routes which a vehicle has taken, which increases the control and efficiency of the
workers.

Product’s impact to the company

Our application brings a series of advantages to the company, in relation to the
information that it provides and the processing that we do on this data through our
program. In the list further on we have summarised the main strengths of our
application, and the problems that we seek to resolve.

FleetManager’s main advantages:

• Vehicle fuel use and ubication control
• Worker control and its location in the assigned task
• Daily vehicle route summary
• Vehicle and worker’s data management
• Vehicle’s location display in a map
• Vehicle cost optimization
• Management of the users of the platform
• Ideal route study to increase the worker’s efficacy

Main disadvantages of not using FleetManager:

• Being unable to control vehicle’s fuel use and location
• Having no control over if a worker has arrived at the target location and

when has he finished his service

27

• Not having a daily summary of the cost associated with a worker and it’s
vehicle

• Not having vehicle data management
• Being unable to optimize vehicle cost due to the lack of data
• Requiring additional staff to manage time of starting and finishing a

worker’s service
• Not knowing the location of a vehicle after a robbery
• Not knowing the location of a vehicle after an accident

Conclusions

The knowledge obtained during the development of this project consisted in the
learning of a new framework such as Laravel, that enables us to manage relational
database models. Combining that with the Mikrotik’s configuration and Google Maps’
integration, it brings a lot of advantages for companies that face the same lack of vehicle
control problems.

The service presented in this article brings a lot of potential since it consists of a web
application where the user can manage all the data related to the vehicle, the worker,
and their locations. It is important to highlight that FleetManager is able to show real-
time vehicle location.

For future projects, we must take further into account the organization and the priority
level of the various tasks and emphasize the importance of defining the goals during the
meetings, since it greatly effects development.

Furthermore, this project contains all the required functionalities that it has been asked
for. The platform’s visible part is currently designed for computer screen resolution, but
it would be advisable to develop it for other kinds of resolutions.
It is also advisable to develop a continuous request signal to the database to display the
information on the map in a dynamic manner, since it would positively effect user
experience.

About the database, it would be wise to consider working with a non-relational model,
since it offers greater potency with processing the different objects and can bring in a
bigger and more dynamic storage potential.

28

Bibliography

1: Laravel - The PHP Framework For Web Artisans. (2022). Retrieved 30 June 2022,
from https://laravel.com/

2: PHP: Hypertext Preprocessor. (2022). Retrieved 2 July 2022, from
https://www.php.net/

3: MikroTik. (2022). Retrieved 30 June 2022, from https://mikrotik.com/

4: Winbox. (2022). Retrieved 30 June 2022, from https://mikrotik.com/download

5: Tailwind CSS - Rapidly build modern websites without ever leaving your HTML.
(2022). Retrieved 2 July 2022, from https://tailwindcss.com/

6: Boostrap, B. (2022). Bootstrap. Retrieved 2 July 2022, from
https://getbootstrap.com/

7: MySQL :: MySQL Downloads. (2022). Retrieved 2 July 2022, from
https://www.mysql.com/downloads/

8: phpMyAdmin, p. (2022). phpMyAdmin. Retrieved 2 July 2022, from
https://www.phpmyadmin.net/

9: Google Maps Platform | Google Developers. (2022). Retrieved 30 June 2022, from
https://developers.google.com/maps

10: Apache, D. (2022). The Apache HTTP Server Project. Retrieved 30 June 2022, from
https://httpd.apache.org/

11: Composer. (2022). Retrieved 2 July 2022, from https://getcomposer.org/

12: Git. (2022). Retrieved 2 July 2022, from https://git-scm.com/

